AVC Using a Backstepping Design Technique

نویسندگان

  • R. Ferreiro García
  • F. Fraguela Diaz
  • A. De Miguel Catoira
چکیده

This chapter deals with the vibration attenuation or vibration suppression by means of feedback control techniques applied to decrease the dynamic response of a rotor assumed as active magnetic dynamic damping which is common in rotating machinery supported by active magnetic bearings. Position control systems applied on active magnetic bearings are using sometimes nonlinear robust control techniques. Backstepping control algorithms have been successfully applied to control active magnetic bearings in recent industrial applications. Consequently, when such an algorithm is being applied to control the radial shaft position, active vibration control should be performed taking advantage of the use of the same control algorithm. In the proposed methodology it is applied the Backstepping algorithm in cascade with a master conventional PID controller. The main functions of the cascade strategy are summarized as, desired radial shaft trajectory and radial position generation, rotor stabilization and vibration attenuation. Backstepping methodology provides a rather straightforward way to design the slave or cascade controller suitable for an unstable nonlinear system such as a magnetic bearing. Stabilization of the closed-loop system is achieved by incorporating appropriate Lyapunov functions which are inherent to the Backstepping algorithm. The global asymptotic stability is ensured when the derivative of the Lyapunov function is rendered negative definite by the control law. The closed loop damping or vibration attenuation is achieved according requirements by on-line determining and selecting the appropriate gains and parameters for the implemented control strategy as function of the fundamental vibration characteristics. The aim to continue with research activities on this technologic field after more then three decades of intensive work, obeys to the fact that some modern machines require the characteristics and advantages of applying such technology (Gerhard Schweitzer, Eric H. Maslen Editors, 2009). The main characteristics of AMB based machines where the rotor is supported by radial active magnetic bearings are summarized as follows: The unbalance compensation.The most relevant characteristic of an AMB deals with the active compensation of shaft disturbances, such vibration due to residual unbalance which can be effectively measured and identified by the AMB control system. The signal is used to either generate counteracting and compensating bearing forces or to shift the rotor axis in such away that the rotor is rotating force-free. The positioning precision.The radial precision with which the position of the rotor can be controlled, is mainly determined by the precision or quality of the measurement signal within the control loop. Conventional inductive sensors, (eddy current based sensors) for example, have a measurement resolution of about 1/100 to 1/1000 of a millimetre.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of a Hyperchaotic System Via Generalized Backstepping Method

 This paper investigates on control and stabilization of a new hyperchaotic system. The hyperchaotic system is stabilized using a new technique which called Generalized Backstepping Method (GBM). Because of its similarity to Backstepping approach, this method is called GBM. But, this method is more applicable in comparison with conventional Backstepping.  Backstepping method is used only for sy...

متن کامل

ADAPTIVE BACKSTEPPING CONTROL OF UNCERTAIN FRACTIONAL ORDER SYSTEMS BY FUZZY APPROXIMATION APPROACH

In this paper, a novel problem of observer-based adaptive fuzzy fractional control for fractional order dynamic systems with commensurate orders is investigated; the control scheme is constructed by using the backstepping and adaptive technique. Dynamic surface control method is used to avoid the problem of “explosion of complexity” which is caused by backstepping design process. Fuzzy logic sy...

متن کامل

ADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF PERTURBED NONLINEARLY PARAMETERIZED SYSTEMS USING MINIMAL LEARNING PARAMETERS ALGORITHM

In this paper, an adaptive fuzzy tracking control approach is proposed for a class of single-inputsingle-output (SISO) nonlinear systems in which the unknown continuous functions may be nonlinearlyparameterized. During the controller design procedure, the fuzzy logic systems (FLS) in Mamdani type are applied to approximate the unknown continuous functions, and then, based on the minimal learnin...

متن کامل

Nonlinear Design for Inverted Pendulum using Backstepping Control Technique

Backstepping control technique is a Lyapunov based nonlinear robust technique which is applicable to only strict feedback system. Backstepping technique has been applied on linear inverted pendulum which is under actuated system. Inverted pendulum is swung from its pendant position and stabilized at its upright position. Swing up is achieved by nonlinear backstepping controller but the linear i...

متن کامل

ADAPTIVE FUZZY OUTPUT FEEDBACK TRACKING CONTROL FOR A CLASS OF NONLINEAR TIME-VARYING DELAY SYSTEMS WITH UNKNOWN BACKLASH-LIKE HYSTERESIS

This paper considers the problem of adaptive output feedback tracking control for a class of nonstrict-feedback nonlinear systems with unknown time-varying delays and unknown backlash-like hysteresis. Fuzzy logic systems are used to estimate the unknown nonlinear functions. Based on the Lyapunov–Krasovskii method, the control scheme is constructed by using the backstepping and adaptive techniqu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012